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Abstract

This paper develops the arguments for the use of belief functions (also

known as Dempster-Shafer methods) in probabilistic modeling. We discuss

the motivation for belief functions through examples. Then we outline the

basic properties of belief functions. From this we develop a simple example

in reliability.

KEY WORDS: Dempster-Shafer methods; belief functions; random set;

uncertainty quantification; decision-making.

1 Motivation

Given a fair die, what is the probability of rolling a 6? Clearly, 1 in 6. Suppose,

however, that instead of knowing the die is fair, you know that the probability of

rolling an even number is the same as rolling the probability of an odd number.

What is the probability of rolling a 6?

There are a number of ways to think about this problem. One way is to

employ the Principle of Insufficient Reason, which says that if there is no reason

to choose between several alternatives, they should be treated as equally likely

(Hacking 2001). In this case, this would imply that the probability of rolling a

6 is 1
2 × 1

3 = 1
6 .

Using the information that “the probability of evens is the same as the prob-

ability of odds” plus Principle of Insufficient Reason leads to the same answer

as assuming the die is fair. Clearly, using the Principle of Insufficient Reason

adds information. What can we say if we choose not to add any additional
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information?

We can say that the probability of rolling a 6 is at least 0 and at most 1
2 .

Six is an even number, so the probability of rolling a 6 can be at most the

probability of rolling an even number, so it is bounded at 1
2 . However, we also

have no guarantee that a 6 will ever appear, so the probability could be 0.

Extending this logic, there are a set of probability distributions describing

a roll of the die that are consistent with the information “the probability of

evens is the same as the probability of odds.” Letting pi = P (roll = i), any

distribution with 0 ≤ pi ≤ 1
2 ,

∑
i=1,3,5 pi = 1

2 , and
∑

i=2,4,6 pi = 1
2 is valid. In

particular, pi = 1
6 , i = 1, . . . , 6 works, as does p1 = 1

2 , p4 = 1
2 .

2 Fundamental Ideas

The previous example can be described using the theory of belief functions (also

known as evidence theory and Dempster-Shafer theory). The basic ideas and

properties of belief function methods are derived from the original notion of the

multi-valued map from Dempster (1967). For simplicity, this discussion focuses

on finite sets; for formal treatments of infinite sets, see Kohlas and Monney

(1995) and Kramosil (2001).

2.1 Probability

Recall the standard theoretical framework used for probability (Billingsley 1986).

Start with a set of “events” or “outcomes” (the sample space or universal set)

and define a measure with certain properties on subsets of the original set.
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The mathematics is as follows. Start with a finite set Θ; for concreteness, let

Θ = {R, Y,G}. Let SΘ be a sigma field generated by Θ. A class SΘ of subsets

of Θ is called a field if it contains Θ itself and is closed under the formation of

complements and finite unions. In symbols,

1. Θ ∈ SΘ

2. A ∈ SΘ implies Ac ∈ SΘ

3. A,B ∈ SΘ implies A ∪B ∈ SΘ.

A class SΘ of subsets of Θ is called a sigma field if it is a field and also closed

under the formation of countable unions. (For a finite universal set, this does

not add any conditions to the definition of a field.) Again for concreteness, let

SΘ = 2Θ = {∅, {R}, {Y }, {G}, {R, Y }, {R, G}, {Y,G}, {R, Y, G}}, the power set

(set of all subsets) of Θ. 2Θ is not the only sigma field that can be constructed

from Θ: consider {∅, {R}, {Y, G}, {R, Y,G}}.

We have a universal set Θ and a sigma field SΘ. Now we want to define

a probability measure on Sθ. A set function is a real-valued function defined

on some class of subsets of Θ. A set function µ on a field SΘ is a probability

measure if it satisfies the following conditions:

1. 0 ≤ µ(A) ≤ 1 for A ∈ Sθ

2. µ(∅) = 0, µ(Θ) = 1

3. if A1, A2, . . . are disjoint with Ai ∈ SΘ and ∪∞i=1Ai ∈ SΘ, then µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai)
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For concreteness, define

µ(∅) = 0, µ({R, Y }) = 0.65,

µ({R}) = 0.25, µ({R, G}) = 0.60,

µ({Y }) = 0.40, µ({Y, G}) = 0.75,

µ({G}) = 0.35, µ({R, Y,G}) = 1.

The triple (Θ, SΘ, µ) is called a probability space, with universal set Θ, sigma

field SΘ, and probability measure µ.

2.2 Multi-Valued Map and Belief Functions

Suppose that in addition to our probability space (Θ, SΘ, µ) we also have another

measurable space defined by a finite set Ω and a sigma field SΩ. Let Ω =

{1, 2, 3, 4, 5, 6} and SΩ = 2Ω. The elements of SΩ are given in Table 1. Also

define a second measurable space, with SΩ = 2Ω as the universal set and S2Ω as

the sigma field.

Now define a map Γ : Θ → SΩ\∅. For concreteness, define Γ(R) → {1, 3, 5},

Γ(Y ) → {2, 4, 6}, Γ(G) → {1, 2, 3}. We can use the map Γ to define a prob-

ability π on the measurable space (SΩ, S2Ω). Define π(E ∈ S2Ω) = µ({θ ∈

Θ : Γ(θ) ∈ E}). In our example, π({{1}, {1, 2, 3}}) = µ({G}) = 0.35 and

π({{2, 4, 6}, {1, 3, 5}}) = µ({R, Y }) = 0.65. Calculating π for each element of

S2Ω and verifying that it is a probability measure are left as exercises.

Notice that this definition of the induced probability π on (SΩ, S2Ω) parallels
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that of a random variable, except that the map Γ is a one-to-many map from

Θ → SΩ\∅ instead of a one-to-one or many-to-one map from Θ → Ω = IR. The

map Γ is called a set-valued random variable or random set (Wasserman 1990).

How does this map back to the original example with our die? Let Θ =

{even, odd} and Ω = {1, 2, 3, 4, 5, 6}. Let µ be a probability measure on SΘ

such that µ(∅) = 0, µ({even}) = 0.5, µ({odd}) = 0.5, and µ({even, odd}) = 1.

Define Γ : Θ → SΩ\∅ as Γ(even) → {2, 4, 6} and Γ(odd) → {1, 3, 5}. Γ induces

a probability distribution on (SΩ, S2Ω).

However, think back to our original question, which was to find the proba-

bility of rolling a 6. To answer this question requires a probability distribution

(or set of distributions, as we saw earlier) on (Ω, SΩ), not on (SΩ, S2Ω). In par-

ticular, we would like to know the probability of {6} ∈ SΩ. How do we use the

induced probability distribution on (SΩ, S2Ω) to talk about (Ω, SΩ)?

To do this, we introduce the ideas of the basic probability assignment, belief

function, and plausability function. Notice that even in small problems, like

ours here, it can be difficult to work with the probability distribution induced

on (SΩ, S2Ω) either because of the size of S2Ω or because of the intuitive problems

of working with distributions on sets of sets. Also, the question of interest, as

with our example, may be about Ω.

Consider the function m : SΩ → [0, 1] defined as m(F ∈ SΩ) = µ({θ ∈

Θ : Γ(θ) = F}). m assigns to each element in SΩ the mass of any element θ

that maps directly to it through Γ. The function m is usually called the basic

probability assignment or b.p.a. on (Ω, SΩ) induced by Γ. It would be convenient
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if m always defined a probability distribution on (Ω, SΩ), but frequently it does

not. It will define a probability distribution on when (Ω, SΩ) when m is assigned

to only singletons. This is the special case in belief functions when the basic

probability assignment collapses to a probability in the classical sense. Although

the b.p.a. is not a probability distribution on Ω, it does have the properties that

m(∅) = 0 and
∑

F∈SΩ
m(F ) = 1. In our die example, the b.p.a. is given in

Table 2.

The basic probability assignment can be used to construct other set functions

on SΩ. In particular, define the following two functions from SΩ → [0, 1]. For

F, G ∈ SΩ:

Bel(F ) =
∑

G⊆F

m(G)

Pl(F ) =
∑

G∩F 6=∅
m(G).

Bel() is called the belief function induced by Γ on SΩ and Pl() is called the

plausability function. (Shafer 1976) Bel() and Pl() can also be written in terms

of Γ and µ; in particular,

Bel(F ) = µ({θ ∈ Θ : Γ(θ) ⊆ F}) (1)

Pl(F ) = µ({θ ∈ Θ : Γ(θ) ∩ F 6= ∅}).

It can be shown that Bel(F ) = 1 − Pl(F c). In addition, Bel() and Pl() are

probability measures if and only if Bel(F ) = Pl(F ) for all F ∈ SΩ.
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Heuristically, belief is the amount of evidence directly supporting F—the

amount of mass from the basic probability assignment completely contained in

F . Plausability is the amount of evidence consistent with F—the amount of

mass that intersects F .

The belief and plausability functions for our die example are given in Table 3

and 4. Notice that Bel({6}) = 0 and Pl({6}) = 0.5. Recall the earlier heuristic

argument about the smallest and largest probability of rolling a 6 given that the

probability of rolling an even number is 0.5. (We can say that the probability of

rolling a 6 is at least 0 and at most 1
2 . Six is an even number, so the probability

of rolling a 6 can be at most the probability of rolling an even number, so it is

bounded at 1
2 . However, we also have no guarantee that a 6 will ever appear,

so the probability could be 0.) The belief and plausability functions are the

mathematical formalization of these arguments.

Any probability measure π that assigns mass to (Ω, SΩ) such that for each

F ∈ SΩ, Bel(F ) ≤ π(F ) ≤ Pl(F ) is compatible with the available information.

2.3 Betting and Coherence

Belief functions, plausability functions, and basic probability assignments are

not probability measures. However, they can be used to define sets of distribu-

tions compatible with the available information. When uncertainty is described

in terms of a probability measure, there is a betting interpretation. In particular,

suppose that I assign probability pE to an event E. The betting interpretation

is a two-sided bet. I am willing to bet $pE to get $1 if E occurs or I am willing
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to bet $(1− pE) to get $1 if E does not occur.

Belief and plausability also have a betting interpretation. In particular, if

Bel(E) is my belief function for event E and Pl(E) is my plausability function

for event E, then I am willing to bet at most $Bel(E) to get $1 if E occurs,

and I am willing to bet at least $Pl(E) to get $1 if E does not occur. These

bets are summarized in Figure 1 (de Cooman and Zaffalon, 2004).

The betting interpretation of probability, belief, and plausability opera-

tionalizes the mathematical definitions and makes it easy to check certain prop-

erties. For example, one desirable property of an uncertainty quantification is

avoiding sure loss. This means that there is not a finite collection of bets that

I am willing to accept that will guarantee that I lose money. For example,

consider the following two bets: To avoid sure loss,

on A: IA −Bel(A)
on Ac: IAc −Bel(Ac)
together: 1− (Bel(A) + Bel(Ac))

1− (Bel(A) + Bel(Ac)) ≥ 0

Pl(A)−Bel(A) ≥ 0

Pl(A) ≥ Bel(A).

This property is easy to check from Equation 1.
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3 Reliability Example

Now consider the application of belief function methods to a reliability problem.

Suppose that we have an item, and we are interested in assessing our uncertainty

about whether the item will survive to time t or will fail by time t. We denote

these two possibilities using a binary variable X, with X = 1 if the item survives,

and X = 0 if the item fails.

Unfortunately, we are cannot test the item directly. Instead we can observe

the presence or the absence of a detectable anomaly. An anomaly could be a

visible defect, or noticeable damage, or some other suitable indicator of imper-

fection. Anomalies could be present and yet not be detected. We denote the

presence of a detected anomaly by letting a binary variable Y take the value

1; the absence of a detectable anomaly by letting Y = 0. The presence of an

anomaly does not necessarily imply that X = 0; however, for simplicity, we as-

sume that the absence of an anomaly implies that X = 1. Figure 2 summarizes

the scenario.

Now consider the application of Dempster-Shafer methods to this “indirect”

data reliability problem. Let pa = P (Y = 1), the probability of an anomaly.

Figure 2 defines a multi-valued map Γ(anomaly) = {survives to t, fails before t}

and Γ(no anomaly) = {survives to t}. This induces the b.p.a., belief, and plaus-

ability functions given in Table 5.

Any probability measure that assigns P (X = 1) in [1− pa, 1] and P (X = 0)

in [0, pa] is compatible with the information. There are essentially two schools

of interpretation for belief and plausability functions. One interpretation is
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as the “lower and upper bounds for some unknown probability distribution”

(Kohlas and Monney 1995). This is the interpretation we have been using. The

other interpretation of Dempster-Shafer methods is in terms of the “degree of

support” for a hypothesis (Shafer 1976). A degree of support of at least 1− pa

is assigned to survival, as any observations of “no anomaly” certainly support

survival. However, there is never unequivocal evidence of failure–even in the

presence of an anomaly, the part may survive until time t. Since there is no

evidence inconsistent with survival until time t, the maximum degree of support

is 1.

Notice that in a traditional Bayesian reliability analysis, either one distribu-

tion compatible with the given information would be selected, or a distribution

would be placed over the possible distributions. In the belief function approach,

there is simply a set of distributions compatible with the given information.

4 Decision Theory

One consequence of the belief function approach to specifying uncertainty is

that classical decision theory must be reconsidered. The classical formulation

of decision-making under uncertainty is as follows. Let Ω be a set of “states of

nature” (the universal set); let A be a set of “actions”; let U(ω, a) be the utility

that is received of action a ∈ A is taken when state of nature ω ∈ Ω holds; let

µ be a probability measure that captures my uncertainty about which state of

nature (ω ∈ Ω) holds. Classical decision theory chooses the action a ∈ A that
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maximizes the expected utility U with respect to µ.

If uncertainty about the states of nature is captured using belief functions,

there are a set of probabilities that describe our uncertainty about µ. In this

case, there is no guarantee that there will be an action that maximizes expected

utility. Consider the reliability example from Section 3 and the states of nature,

actions, and utilities given in Table 6. Let P (X = 1) = P (survives to time t) =

pS . The expected utility of using the item at time t is 2pS−5(1−pS) = 7pS−5.

The expected utility of not using the item at time t is −pS +(1−pS) = 1−2pS .

The expected utility of using the item at time t is greater than the expected

utility of not using the item at time t if 7pS − 5 > 1 − 2pS or pS > 2
3 . Recall

that to be compatible with the given information, pS = P (X = 1) must be in

[1− pa, 1]. So if pa ≤ 1
3 , then using the item at time t maximizes the expected

utility and should be the action of choice. However, if pa > 1
3 , then neither

action uniquely maximizes the expected utility.

5 Discussion

The reliability example considered here is representative of the class of prob-

lems in reliability which is receptive to a belief function representation. Belief

functions present a particular advantage in the case where we are interested

in one phenomenon, but that we can only collect data about another, related

phenomenon. For example, we are interested in the reliability of system compo-

nents but only have data on the system itself. In other words, belief functions
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may be useful when we have “indirect” data or more general data about the

phenomenon of interest. We can relate the two phenomena through a set-valued

map. Although the data that we can collect does not uniquely determine the

outcome of interest, there is still useful information that can be exploited for

the purposes of an analysis.

Belief functions are only one of many possible uncertainty representations.

Traditional probabilistic methods can be considered a special case of the more

general representation that the use of belief functions affords. It is important to

note that there are uncertainty representations that are more general than belief

functions. These are often referred to as imprecise probabilities (Walley 1991).

While the applications of imprecise probabilities are only at the beginning of

their development, we consider this as an important area for future research in

reliability.
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Table 1: Elements of Power Set, SΩ, for Die Example

∅ {1, 2, 3} {1, 2, 3, 5}
{1} {1, 2, 4} {1, 2, 3, 6}
{2} {1, 2, 5} {1, 2, 4, 5}
{3} {1, 2, 6} {1, 2, 4, 6}
{4} {1, 3, 4} {1, 2, 5, 6}
{5} {1, 3, 5} {1, 3, 4, 5}
{6} {1, 3, 6} {1, 3, 4, 6}
{1, 2} {1, 4, 5} {1, 3, 5, 6}
{1, 3} {1, 4, 6} {1, 4, 5, 6}
{1, 4} {1, 5, 6} {2, 3, 4, 5}
{1, 5} {2, 3, 4} {2, 3, 4, 6}
{1, 6} {2, 3, 5} {2, 3, 5, 6}
{2, 3} {2, 3, 6} {2, 4, 5, 6}
{2, 4} {2, 4, 5} {3, 4, 5, 6}
{2, 5} {2, 4, 6} {1, 2, 3, 4, 5}
{2, 6} {2, 5, 6} {1, 2, 3, 4, 6}
{3, 4} {3, 4, 5} {1, 2, 4, 5, 6}
{3, 5} {3, 4, 6} {1, 2, 3, 5, 6}
{3, 6} {3, 5, 6} {1, 3, 4, 5, 6}
{4, 5} {4, 5, 6} {2, 3, 4, 5, 6}
{4, 6} {1, 2, 3, 4} {1, 2, 3, 4, 5, 6}
{5, 6}
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Table 2: Basic Probability Assignment, m, for Die Example

m(∅) = 0 m({1, 2, 3}) = 0 m({1, 2, 3, 5}) = 0
m({1}) = 0 m({1, 2, 4}) = 0 m({1, 2, 3, 6}) = 0
m({2}) = 0 m({1, 2, 5}) = 0 m({1, 2, 4, 5}) = 0
m({3}) = 0 m({1, 2, 6}) = 0 m({1, 2, 4, 6}) = 0
m({4}) = 0 m({1, 3, 4}) = 0 m({1, 2, 5, 6}) = 0
m({5}) = 0 m({1, 3, 5}) = 0.5 m({1, 3, 4, 5}) = 0
m({6}) = 0 m({1, 3, 6}) = 0 m({1, 3, 4, 6}) = 0
m({1, 2}) = 0 m({1, 4, 5}) = 0 m({1, 3, 5, 6}) = 0
m({1, 3}) = 0 m({1, 4, 6}) = 0 m({1, 4, 5, 6}) = 0
m({1, 4}) = 0 m({1, 5, 6}) = 0 m({2, 3, 4, 5}) = 0
m({1, 5}) = 0 m({2, 3, 4}) = 0 m({2, 3, 4, 6}) = 0
m({1, 6}) = 0 m({2, 3, 5}) = 0 m({2, 3, 5, 6}) = 0
m({2, 3}) = 0 m({2, 3, 6}) = 0 m({2, 4, 5, 6}) = 0
m({2, 4}) = 0 m({2, 4, 5}) = 0 m({3, 4, 5, 6}) = 0
m({2, 5}) = 0 m({2, 4, 6}) = 0.5 m({1, 2, 3, 4, 5}) = 0
m({2, 6}) = 0 m({2, 5, 6}) = 0 m({1, 2, 3, 4, 6}) = 0
m({3, 4}) = 0 m({3, 4, 5}) = 0 m({1, 2, 4, 5, 6}) = 0
m({3, 5}) = 0 m({3, 4, 6}) = 0 m({1, 2, 3, 5, 6}) = 0
m({3, 6}) = 0 m({3, 5, 6}) = 0 m({1, 3, 4, 5, 6}) = 0
m({4, 5}) = 0 m({4, 5, 6}) = 0 m({2, 3, 4, 5, 6}) = 0
m({4, 6}) = 0 m({1, 2, 3, 4}) = 0 m({1, 2, 3, 4, 5, 6}) = 0
m({5, 6}) = 0
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Table 3: Belief for Die Example

Bel(∅) = 0 Bel({1, 2, 3}) = 0 Bel({1, 2, 3, 5}) = 0.5
Bel({1}) = 0 Bel({1, 2, 4}) = 0 Bel({1, 2, 3, 6}) = 0
Bel({2}) = 0 Bel({1, 2, 5}) = 0 Bel({1, 2, 4, 5}) = 0
Bel({3}) = 0 Bel({1, 2, 6}) = 0 Bel({1, 2, 4, 6}) = 0.5
Bel({4}) = 0 Bel({1, 3, 4}) = 0 Bel({1, 2, 5, 6}) = 0
Bel({5}) = 0 Bel({1, 3, 5}) = 0.5 Bel({1, 3, 4, 5}) = 0.5
Bel({6}) = 0 Bel({1, 3, 6}) = 0 Bel({1, 3, 4, 6}) = 0
Bel({1, 2}) = 0 Bel({1, 4, 5}) = 0 Bel({1, 3, 5, 6}) = 0.5
Bel({1, 3}) = 0 Bel({1, 4, 6}) = 0 Bel({1, 4, 5, 6}) = 0
Bel({1, 4}) = 0 Bel({1, 5, 6}) = 0 Bel({2, 3, 4, 5}) = 0
Bel({1, 5}) = 0 Bel({2, 3, 4}) = 0 Bel({2, 3, 4, 6}) = 0.5
Bel({1, 6}) = 0 Bel({2, 3, 5}) = 0 Bel({2, 3, 5, 6}) = 0
Bel({2, 3}) = 0 Bel({2, 3, 6}) = 0 Bel({2, 4, 5, 6}) = 0.5
Bel({2, 4}) = 0 Bel({2, 4, 5}) = 0 Bel({3, 4, 5, 6}) = 0
Bel({2, 5}) = 0 Bel({2, 4, 6}) = 0.5 Bel({1, 2, 3, 4, 5}) = 0.5
Bel({2, 6}) = 0 Bel({2, 5, 6}) = 0 Bel({1, 2, 3, 4, 6}) = 0.5
Bel({3, 4}) = 0 Bel({3, 4, 5}) = 0 Bel({1, 2, 4, 5, 6}) = 0.5
Bel({3, 5}) = 0 Bel({3, 4, 6}) = 0 Bel({1, 2, 3, 5, 6}) = 0.5
Bel({3, 6}) = 0 Bel({3, 5, 6}) = 0 Bel({1, 3, 4, 5, 6}) = 0.5
Bel({4, 5}) = 0 Bel({4, 5, 6}) = 0 Bel({2, 3, 4, 5, 6}) = 0.5
Bel({4, 6}) = 0 Bel({1, 2, 3, 4}) = 0 Bel({1, 2, 3, 4, 5, 6}) = 1.0
Bel({5, 6}) = 0
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Table 4: Plausability for Die Example

Pl(∅) = 0 Pl({1, 2, 3}) = 1.0 Pl({1, 2, 3, 5}) = 1.0
Pl({1}) = 0.5 Pl({1, 2, 4}) = 1.0 Pl({1, 2, 3, 6}) = 1.0
Pl({2}) = 0.5 Pl({1, 2, 5}) = 1.0 Pl({1, 2, 4, 5}) = 1.0
Pl({3}) = 0.5 Pl({1, 2, 6}) = 1.0 Pl({1, 2, 4, 6}) = 1.0
Pl({4}) = 0.5 Pl({1, 3, 4}) = 1.0 Pl({1, 2, 5, 6}) = 1.0
Pl({5}) = 0.5 Pl({1, 3, 5}) = 0.5 Pl({1, 3, 4, 5}) = 1.0
Pl({6}) = 0.5 Pl({1, 3, 6}) = 1.0 Pl({1, 3, 4, 6}) = 1.0
Pl({1, 2}) = 1.0 Pl({1, 4, 5}) = 1.0 Pl({1, 3, 5, 6}) = 1.0
Pl({1, 3}) = 0.5 Pl({1, 4, 6}) = 1.0 Pl({1, 4, 5, 6}) = 1.0
Pl({1, 4}) = 1.0 Pl({1, 5, 6}) = 1.0 Pl({2, 3, 4, 5}) = 1.0
Pl({1, 5}) = 0.5 Pl({2, 3, 4}) = 1.0 Pl({2, 3, 4, 6}) = 1.0
Pl({1, 6}) = 1.0 Pl({2, 3, 5}) = 1.0 Pl({2, 3, 5, 6}) = 1.0
Pl({2, 3}) = 1.0 Pl({2, 3, 6}) = 1.0 Pl({2, 4, 5, 6}) = 1.0
Pl({2, 4}) = 0.5 Pl({2, 4, 5}) = 1.0 Pl({3, 4, 5, 6}) = 1.0
Pl({2, 5}) = 1.0 Pl({2, 4, 6}) = 0.5 Pl({1, 2, 3, 4, 5}) = 1.0
Pl({2, 6}) = 0.5 Pl({2, 5, 6}) = 1.0 Pl({1, 2, 3, 4, 6}) = 1.0
Pl({3, 4}) = 1.0 Pl({3, 4, 5}) = 1.0 Pl({1, 2, 4, 5, 6}) = 1.0
Pl({3, 5}) = 0.5 Pl({3, 4, 6}) = 1.0 Pl({1, 2, 3, 5, 6}) = 1.0
Pl({3, 6}) = 1.0 Pl({3, 5, 6}) = 1.0 Pl({1, 3, 4, 5, 6}) = 1.0
Pl({4, 5}) = 1.0 Pl({4, 5, 6}) = 1.0 Pl({2, 3, 4, 5, 6}) = 1.0
Pl({4, 6}) = 0.5 Pl({1, 2, 3, 4}) = 1.0 Pl({1, 2, 3, 4, 5, 6}) = 1.0
Pl({5, 6}) = 1.0

Table 5: Basic Probability Assignment, Belief, and Plausability for Reliability
Example

m() Bel() Pl()
∅ 0 0 0
{survives to t} 1− pa 1− pa 1
{fails by t} 0 0 pa

{survives to t, fails by t} pa 1 1

Table 6: States of Nature, Actions, and Utilities for Reliability Example

Use at t Do not use at t
{survives to t} 2 -1
{fails by t} -5 1
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